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Abstract

This paper studies the robustness of pricing strategies when a firm

is uncertain about the distribution of consumers’ willingness-to-pay.

When the firm has access to data to estimate this distribution, a simple

strategy is to implement the mechanism that is optimal for the esti-

mated distribution. We find that such empirically optimal mechanism

boasts strong profit and regret guarantees. Moreover, we provide a

toolkit to evaluate the robustness properties of different mechanisms,

showing how to consistently estimate and conduct valid inference on

the profit generated by any one mechanism, which enables one to

evaluate and compare their probabilistic revenue guarantees.
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1. Introduction

When facing uncertainty about consumers’ willingness-to-pay, pricing and projec-

tions are two central elements of a firm’s business plan. As the profitability of

any pricing strategy is uncertain, it may be desirable to pursue strategies that pro-

vide revenue guarantees for the firm. On the other hand, firms often depend on

projections about their future revenue under different scenarios to inform budget

planning, inventory management, capital investments, and more. Consequently,

they need to be able not only to consistently estimate their expected profits but also

to have reliable confidence bounds. While pricing and projections are conceptually

intertwined, these can and are often considered separately.

In this paper, we propose a data-based approach to tackle both these issues. In

our setup, the firm faces uncertainty about the true distribution of consumers’ types

in the otherwise canonical setup of Maskin and Riley (1984). As is standard, we

allow the firm to design mechanisms – pairs of prices and quantities – though our

results also hold in the more restrictive setting of uniform pricing. However, dif-

ferently from what is typically assumed in the robust mechanism design literature,

instead of holding precise information about features of the distribution of con-

sumers’ willingness-to-pay, we assume the firm observes a finite sample drawn from

this distribution.

Our contribution is twofold. First, we study a specific pricing strategy, the em-

pirically optimal mechanism, and its finite sample robustness properties. Second,

we provide a toolkit to perform statistical inference on the profit obtained for any

arbitrary mechanism, including the empirically optimal one, enabling a data-based

approach to the evaluation and comparison of different pricing strategies.

Empirically optimal mechanisms are constructed in a simple and intuitive manner.

Fixing any given distribution of consumer types, we start by obtaining a mechanism

that is optimal for that distribution. This mapping from distributions to optimal
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mechanisms is then coupled with a consistent estimator for the true distribution.

Hence, empirically optimal mechanisms maximize expected profit when the esti-

mate is taken to be the true distribution. Importantly, this class of menus relies on

a fully nonparametric, prior-free estimator of the type distribution.

We show that mechanisms constructed in this manner are asymptotically optimal,

achieving the optimal profit with probability one as the sample size grows. More-

over, empirically optimal mechanisms are robust in the spirit of Bergemann and

Schlag (2011), that is, small perturbations of the estimated distribution, induced

by changes in the underlying data, do not affect the firm’s expected profits. This

follows from establishing Lipschitz continuity of the firm’s value function in the

distribution.

Empirically optimal mechanisms also entail strong probabilistic guarantees for

both profit and regret – the difference between the optimal expected profit and

the expected profit that a mechanism delivers under the true distribution – and we

characterize how these relate to the sample size. For any given finite sample size,

we obtain a probabilistic lower bound for expected profit and a probabilistic upper

bound for regret. Crucially, these bounds are not asymptotic and depend only on

known constants. These results are then used to establish how many samples the

firm needs, from an ex-ante perspective, to obtain probabilistic bounds on expected

profit and on maximal regret. Our findings are related to the growing literature on

sample-based revenue guarantees (see e.g. Cole and Roughgarden 2014; Huang

et al. 2018; Guo et al. 2020), as we provide a non-asymptotic lower bound on

sampling requirements for profit and regret guarantees.

We then provide tools for estimating expected profit and reliably conducting in-

ference, not only for a mechanism that is empirically optimal given an estimate of

the distribution, but for any fixed mechanism. We derive an estimator for expected

profit that is consistent and unbiased, and, when appropriately rescaled, asymp-
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totically normal. Further, we note the validity of a bootstrap implementation to

conducting inference.

This approach enables estimation of the expected profit that any given mechanism

attains for purposes such as budgeting, regardless of the criteria that guided the

choice of the mechanism. Moreover, the ability to conduct data-based inference on

the expected profit also expands the criteria that can be used to select a mechanism,

namely by considering probabilistic revenue guarantees given by confidence inter-

vals, by testing which in a set of alternative mechanisms achieves a higher expected

profit, or by directly analyzing the distribution of the difference in profit between

any two mechanisms. As such, this methodology of estimation and inference ap-

plies generally and opens up a new, data-based approach to deriving robust revenue

guarantees.

In particular, we show how empirically optimal mechanisms can be used to esti-

mate and conduct inference on the optimal expected profit, that is, the maximum

expected profit that could be obtained were the firm to know the true distribution.

Conducting inference on the optimal expected profit is useful for two reasons. First,

as regret considerations constitute a standard criterion in the literature for selecting

among competing mechanisms and as regret, by its definition, depends on knowl-

edge of the optimal expected profit, a means to consistently estimate and conduct

inference on the latter will enable the same for the former. Second, the maximum

achievable profit can itself be an object of interest when, for instance, comparing

the expected return of alternative investment possibilities.

While consistency of our suggested estimator follows from our results on asymp-

totic optimality of empirically optimal mechanisms, its asymptotic normality follows

from a novel envelope theorem for the firm’s value function. In other words, we

show that the value function is Fréchet differentiable in the distribution of consumer

types and that its Fréchet derivative equals that of the profit function at the empir-
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ically optimal mechanism. With Fréchet differentiability in hand, a Delta method

for statistical functionals applies, and asymptotic normality of our estimator ensues.

We then again consider bootstrap implementations for conducting inference.

In order to study the finite sample properties of the proposed estimators, we con-

duct Monte Carlo simulations of their bootstrap implementation for the standard

specification of sale of an indivisible good. We perform this exercise for the ex-

pected profit of a given mechanism as well as for the optimal profit. The evidence

shows that the empirical coverage of our estimators approximates well the associ-

ated confidence intervals, even with relatively few samples.

Finally, we illustrate how our results on empirically optimal mechanisms partially

extend to an auction setting. We consider the case where the firm auctions a sin-

gle item to a finite number of risk-neutral bidders with independent private values

drawn from the same distribution. In particular, analog versions of asymptotic op-

timality and profit and regret guarantees are shown to hold in this setting as well.

Empirically optimal mechanisms correspond to one of the simplest forms of statis-

tically informed mechanism design: observing a sample, estimating a distribution,

and implementing a mechanism that is optimal for the estimated distribution. As we

demonstrate, this extremely simple mechanism not only has sound revenue guaran-

tees, but also allows practitioners to estimate the maximum profit attainable. Our

results on estimation of the expected profit enable designers to construct confidence

intervals and perform hypothesis testing, constituting a useful tool for practitioners

and empiricists. From a theoretical perspective, we hope our data-based perspec-

tive on robust mechanism design proves useful in the broader study of mechanism

design under model uncertainty.
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Related Literature

The most directly related literature studies robust mechanism design with a monop-

olist who has perfect knowledge not about the whole distribution as in the more

standard models (e.g. Maskin and Riley 1984), but only about some features of

this distribution. With such information, the firm can then narrow down the set of

possible distributions to consider and adopt a pricing strategy that maximizes the

worst-case profit or minimizes the worst-case regret. This approach tries to address

the concern that the optimal mechanism is not robust to the firm having less than

exact information on the distribution of consumers’ willingness-to-pay, in line with

the general research program of robust mechanism design.

The papers in this literature closest to ours are Bergemann and Schlag (2008;

2011) and Carrasco et al. (2018). These papers model a firm that does not know the

distribution of consumer types, but has access to imperfect information that allows

it to refine the set of possible distributions. Focusing on a linear specification, they

assume the firm acts as if it faces an adversarial nature that chooses a distribution

to maximize regret.1 Bergemann and Schlag (2008) assume that the firm knows

only an upper bound for the support; Bergemann and Schlag (2011) study the case

where the firm also knows that the true distribution of consumers’ willingness-to-

pay is in a given neighborhood of a given target distribution; Carrasco et al. (2018)

posits that the firm knows either the first moment and an upper bound for the

support of the distribution,2 or the first two or three moments of the distribution.

These papers then characterize the regret-minimizing mechanisms, whereby the

firm hedges against uncertainty by randomizing over prices. In contrast, we assume

that the firm does not know specific features of the distribution but instead has ac-

1Bergemann and Schlag (2011) also consider the case where nature minimizes profit and show the
firm chooses a deterministic uniform pricing rule.

2This is also the case in a closely related paper, Carrasco et al. (2018), where the assumptions on
consumer’s utility function of linearity in quantity and on linearity of the firm’s cost are relaxed.
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cess to a sample drawn from the true distribution, from which these features could

potentially be estimated and upon which an empirical version of these mechanisms

could be implemented. Our analysis shows that, in addition to its other desirable

properties, the empirically optimal mechanism generates nearly minimal maximum

regret in the sense of these papers.

In another closely related paper, Madarász and Prat (2017) allow for a firm that is

uncertain over both the distribution of types and the functional form of consumers’

utility functions, while at the same time endowing the firm with a possibly mis-

specified benchmark model of consumer demand. They provide a uniform bound

on regret that depends on the distance between the firm’s benchmark model and

the truth, where the measure of distance between models is related to the largest

absolute value of the difference of willingness-to-pay across all possible types and

quantities. Instead of looking at the worst-case scenario solution, the authors show

that adjusting the pricing strategy that is optimal for the misspecified model in a

specific manner involving this distance leads to a uniform bound on regret.

The present study takes a similar approach to Segal (2003), in that both papers

determine the optimal mechanism from an estimate of the distribution function.

While we focus on issues of estimation and inference, Segal (2003) is concerned

with designing a mechanism that makes optimal use of the information contained

in consumers’ reported valuations. This optimal mechanism implements a bidding

system in which consumers receive the good if their bid is above a threshold price

that depends on others’ bids. This induces consumers to reveal their own type while

simultaneously allowing the firm to use others’ bids to infer the distribution. The

paper shows that as the number of consumers increases, profits converge to the

optimal profit with a known type distribution, and discusses rates of convergence.

However, the dependency of the optimal price on others’ valuations forces the im-

position of strong assumptions on the estimated distribution function, rendering

non-parametric methods problematic. Our framework, on the other hand, is sin-
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gularly suited to rely on non-parametric estimation of and inference on the type

distribution and does not require consumers to directly communicate their types.3

Furthermore, we believe that a key product of our paper is its novel toolkit for

conducting inference and obtaining revenue guarantees for any mechanism.

Our work is also related to the literature on sample complexity. Huang et al.

(2018) deals with the case where the firm observes independent samples from the

unknown true type distribution and consumers have quasilinear-linear utility func-

tions as above. The authors provide probabilistic asymptotic bounds on the number

of samples from the true distribution of consumers’ valuations that are necessary to

achieve a share of 1−ε of the optimal profit. Similarly, our sample complexity re-

sults provide non-asymptotic sample upper bounds for regret and profit for specific

mechanisms, but for the more general class of utility functions. Fu et al. (2020), in

an auction setup, characterize the number of samples from the true distribution of

bidders’ types that are necessary for the designer to achieve full surplus extraction.

Opposite to this paper, their type space is finite and the unknown distribution of

types belongs to a finite set of joint distributions over all the bidders’ values such

that the types are correlated in a specific manner.

A brief outline of the paper is as follows. Section 2 introduces the main theoretical

framework. In Section 3, we define our class of empirically optimal mechanisms

and examine some of their main properties: asymptotic optimality and profit guar-

antees. After exploring this particular class of mechanisms, in Section 4 we turn to

the question of providing a statistical toolkit to estimate and conduct inference on

profit, including optimal expected profit. Section 5 illustrates an extension of our

3For instance, the sample may be obtained by implementing revealed-preference elicitation tech-
niques. An example would be providing a menu that corresponds to a direct mechanism inducing
perfect discrimination between all possible types – where the quantity is a strictly increasing function
of the type – and infer consumers’ types from their choices. This would then be incentive compat-
ible if consumers are myopic, the good is durable or if it is possible to exclude them from future
purchases.
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results to the auction setting with independent private values. Finally, we conclude

with a discussion of specific suggestions for further work in Section 6. All omitted

proofs are included in the appendix.

2. Setup

Let Θ := [θ
¯
, θ̄] ⊂ R, denote the set of feasible consumer types, which are distributed

according to the cumulative distribution F0 ∈ F , where F corresponds to the set

of all distributions on Θ endowed with the supremum-norm ‖ ·‖∞, i.e., ‖F‖∞ :=
supt∈R |F(t)| for all F ∈ F . Consumers’ utility is given by u(θ, x, p) = v(θ, x)− p,

where θ is the consumer’s type, x ∈ X := [0, x̄] denotes quantity and p ∈ R+ price.

We assume that v is twice continuously differentiable, concave in x, supermodu-

lar, v(θ
¯
, x) = v(θ,0) = 0 for all θ and x, increasing in both arguments and, wherever

strictly positive, strictly so.

The firm can choose a menu or mechanism M from the set M of all compact

menus M′ ⊂ X ×R+ containing the element (0,0). These comprise pairs of quantity

and prices that the consumers can choose, with the option of consuming nothing

being always available. We impose the further restriction that if (x,0) ∈ M′, then

x = 0; that is, the firm does not give away strictly positive quantities of the good for

free.4 The firm incurs a twice differentiable, convex and strictly increasing cost for

quantity sold, c : X → R, where c(0) = 0. When choosing menu M ∈ M subject to a

distribution F ∈F of consumer types, the firm’s expected profit π(M,F) is given by

π(M,F) :=
∫

p(θ)− c (x(θ))dF(θ)

for some (x(θ), p(θ)) ∈ argmax(x,p)∈M u(θ, x, p), with ties broken in favor of the firm.

4This restriction facilitates Section 4’s inference exercise for an arbitrary fixed menu and is without
loss of revenue from the firms’ perspective.
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Our setup encompasses many of the variations in the literature,5 being mostly the

same as that in the one buyer version of Myerson (1981) and Maskin and Riley

(1984), except that there c is assumed to be linear and F corresponds to the distri-

butions with a strictly positive density. Mussa and Rosen (1978), instead, assume

that v(θ, x) = θ · x and specify c to be strictly convex. In Bergemann and Schlag

(2011) and Carrasco et al. (2018), v(θ, x) = θ · x and F is a subset of distributions

that satisfy some pre-specified conditions.

We consider the case where neither the firm nor the consumers know the true

distribution of types, F0 ∈F , which motivates the choice of dominant strategies as

our solution concept. Instead, the firm has access to a sample Sn = (θi, i = 1, ...,n) ∈
Θn, n ∈ N, where each θi is independently drawn from F0. This gives rise to the

problem of selecting a menu depending on the realized sample. Let S denote the

set of all samples, S := ⋃
n∈NΘn. A sample-based mechanism is then a mapping

MS : S →M , which selects a specific menu depending on the realized sample.

The robust mechanisms mentioned earlier can easily be adjusted to incorporate

the information in the sample in order to estimate the features of the distribution

that they assume to be known. For example, given a particular sample Sn, the firm

can then estimate the support of the true distribution and implement the mech-

anism given in Bergemann and Schlag (2008). Alternatively, it can estimate the

first few moments of the true distribution and implement the mechanism in Car-

rasco et al. (2018). A natural question is then whether, given sampling uncertainty,

these sample-based mechanisms would exhibit probabilistic robustness properties

akin to the deterministic ones that hold when these features are perfectly known.

This question is relevant in practice, since any information about an unknown dis-

tribution is usually obtained from finite data. We therefore take a more direct and,

5It does not include, for instance, the case where the firm’s cost depends directly on the consumers’
type as in Example 4.1 in Toikka (2011).
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arguably, simpler approach that makes full use of the sample itself to “learn” about

the underlying true distribution and inform mechanism choice.

3. Empirically Optimal Mechanisms

In this section, we introduce the class of empirically optimal mechanisms. This class

of mechanisms is defined by two elements: an estimator of the true distribution and

a mapping that takes each estimated distribution to a menu that would be optimal

were the estimate to coincide with the true distribution.6

Let F̂ denote the set of estimators that are consistent for F0, that is, the set of

estimators F̂ such that (i) F̂ : S → F ; and (ii) ‖F̂(Sn)−F0‖∞ p→ 0, for any F0 in

F . Let M∗ : F → M be a fixed selection from the set of optimal menus for every

distribution, that is, ∀F ∈F , M∗(F) ∈M∗(F) := argmaxM∈M π(M,F). An empirically

optimal mechanism M̂∗ is a sample-based mechanism that simply joins together a

consistent estimator and a selection from the set of optimal menus, that is, M̂∗ =
M∗ ◦ F̂. We refer to the set of empirically optimal mechanisms as M̂∗.

While extremely simple, nothing ensures us that such a sample-based mechanism

is either well-defined in general environments or that it constitutes a reasonable

approach to pricing under uncertainty. The purpose of this section is to address

these issues and show that this “naive” approach to pricing delivers several desirable

properties including strong probabilistic robustness guarantees.

3.1 Existence

In order to show that the set of empirically optimal mechanisms M̂∗ is nonempty,

we start by briefly noting that an optimal menu exists for any distribution F ∈ F ,

6Note that, if the seller did have a prior, µ ∈ ∆(∆(Θ)), over the set of possible distributions, it
would still be sufficient to consider only the expected distribution according to the seller’s posterior,
Eµ[F|Sn] ∈ F , in order to determine which mechanism to choose. That is, due to linearity of the
profit function on the distribution, maxM∈M Eµ[π(M,F)|Sn]=maxM∈M π(M,Eµ[F|Sn]).
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that is, M∗(F),; for all F ∈F . We include a formal proof of this statement in the

appendix.

Since this implies that a selection M∗ : F → M such that M∗(F) ∈ M∗(F) exists

and as there are consistent estimators for any F0 ∈F , the set of empirically optimal

mechanisms M̂∗ is nonempty. An example of a consistent (and unbiased) estimator

for F0 is the empirical cumulative distribution, defined as F̂(Sn)(θ) = 1
n

∑n
i=1 1{θi≤θ},

which, for any F0 ∈F , has a uniform rate of convergence, that is, ‖F̂(Sn)−F0‖∞ p→
0 (in fact, by the Glivenko–Cantelli theorem, uniform convergence occurs almost

surely).

Note that under some specific conditions, an exact characterization of the set of

optimal menus is known. For instance, if v(θ, x) = θ · x and c(x) = c · x, it is well-

known that any optimal mechanism is F-almost everywhere equal to an indicator

function 1{p∗≥θ}, where p∗ ∈ argmaxp∈supp(F)(p− c) · ∫ 1{p≥θ}dF(θ). Such an explicit

solution simplifies the problem of characterizing empirically optimal mechanisms

dramatically. When, instead, v is multiplicatively separable, and F0 is absolutely

continuous and has convex support, any optimal mechanism is almost everywhere

equal to pointwise maximization of the ironed virtual value as shown in Toikka

(2011). Hence, the problem of characterizing empirically optimal mechanisms can

be made computationally tractable by ensuring not only consistency, but also ab-

solutely continuity and convex support of estimates F̂(Sn). Although the empirical

cumulative distribution is not absolutely continuous, one such estimator F̂ can be

easily obtained by adopting any smooth interpolation of the empirical cumulative

distribution, for example a linear interpolation, a cubic spline or an interpolation

relying on Bernstein polynomials.7

7In the appendix, we provide a simple proof for the fact that linear interpolations retain the uniform
convergence (and therefore consistency) properties of the empirical distribution. See Babu et al.
(2002) and Leblanc (2011) for details on interpolation of the empirical cumulative distribution
using Bernstein polynomials.
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3.2 Asymptotic Optimality

Having defined our class of empirically optimal mechanisms, we establish in this

section that they are asymptotically optimal: the realized expected profit given the

mechanism converges in probability to the optimal expected profit as the sample

size grows.

Such convergence is not guaranteed for arbitrary sample-based mechanisms, even

for those that have desirable robustness properties, as it requires that the sample-

based mechanism makes full use of the sample. For instance, if the mechanism

relies only on statistics such as estimates for a finite number of moments or the

support of the distribution, then it is immediate that it will not, in general, con-

verge in probability to the optimal expected profit. Relying on an estimator for the

true distribution itself (an infinite-dimensional parameter) is then key to obtaining

asymptotic optimality.

We start by making an important observation:

Lemma 1. For any M ∈M , π(M,F) is Lipschitz continuous in F ∈F , with a Lipschitz

constant L that does not depend on M.

We defer the proof to the appendix, but highlight the main steps here. The proof

of Lemma 1 first makes use of the revelation principle to focus on the elements

of any arbitrary menu that are payoff relevant, as these are given by a bounded

non-decreasing function, and hence of bounded variation. Then, we appeal to a

result that provides an upper bound on Riemann–Stieltjes integrals of functions of

bounded variation to obtain the result. In particular, we find a Lipschitz constant of

at most

L = 2
(
v(θ̄, x̄)+ (θ̄−θ

¯
) ·max

θ′∈Θ
v1(θ′, x̄)+ c(x̄)

)
.
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For every F ∈F , define the firm’s value function as

Π(F) := sup
M∈M

π(M,F).

Lemma 1 leads to a further result, this time regarding (Lipschitz) continuity of the

value function:

Lemma 2. Π is Lipschitz continuous, with Lipschitz constant L.

Proof. For any F,G ∈F ,

|Π(F)−Π(G)| =
∣∣∣∣ sup
M∈M

π(M,F)− sup
M∈M

π(M,G)
∣∣∣∣≤ sup

M∈M
|π(M,F)−π(M,G)| ≤ L · ‖F −G‖∞

�

Finally, the desired result of asymptotic optimality of our class of empirically opti-

mal mechanisms follows immediately:

Proposition 1. Let M̂∗ be an empirically optimal mechanism given by M̂∗ = M∗◦ F̂.

Then, |π(M̂∗(Sn),F0)−Π(F0)| p→ 0.

Proof. By Lemmata 1 and 2,

|π(M̂∗(Sn),F0)−Π(F0)| ≤ |π(M̂∗(Sn),F0)−π(M̂∗(Sn), F̂(Sn))|+ |π(M̂∗(Sn), F̂(Sn))−Π(F0)|
≤ L · ‖F̂(Sn)−F0‖∞+|Π(F̂(Sn))−Π(F0)| ≤ 2L · ‖F̂(Sn)−F0‖∞ p→ 0.

�

Proposition 1 provides a simple justification for using an empirically optimal mech-

anism to guide the firm’s pricing strategy: As the sample size grows large, such

sample-based mechanisms deliver an expected profit close to the optimal one. We

stress the minimal informational assumptions made. In particular, this result does
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not depend on the firm knowing the support of the true distribution F0 ex ante,

as the empirically optimal mechanism is defined making use only of the estimated

cumulative distribution and there are consistent estimators that require no assump-

tions on (and in fact, asymptotically learn) the support of F0. Moreover, as Π(F0)−
π(M̂∗(S),F0) ≤ 2L‖F̂(S)−F0‖∞, we conclude that empirically optimal mechanisms

are robust in a sense akin to Bergemann and Schlag (2011), since for any ε > 0,

samples inducing ‖F̂(S)−F0‖∞ < ε imply that Π(F0)−π(M̂∗(Sn),F0)≤ 2Lε.

3.3 Robustness Properties

While some sample-based implementations of existing robust mechanisms would

not be asymptotically optimal, it is possible that others would. Thus, an obvious

question is: Do empirically optimal mechanisms provide robustness guarantees with

finite samples that render them especially appealing? In this section, we argue that

this is indeed the case.

Robustness properties of mechanisms regard the worst-case scenarios. The exist-

ing literature has focused on two main properties. One corresponds to the worst-

case profit that the firm can expect given that the true distribution lies in a spe-

cific set A ⊆ F . This is in part motivated by appealing to the characterization of

preferences exhibiting ambiguity aversion by Gilboa and Schmeidler (1989), which

entails a maxmin representation, whereby the decision-maker (here, the firm) eval-

uates each act (mechanism) by assuming the worst-case payoff. The robustness of

a specific mechanism according to this criterion is then given by the lower bound

on expected profit it can attain, minF∈Aπ(M,F). The second robustness criterion

that has been considered in the literature depends on the notion of regret: How

much profit the firm may be forgoing by committing to mechanism M when the

true distribution is F0, that is, R(M,F0) :=Π(F0)−π(M,F0).
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A simple implication of Lemmata 1 and 2 is that we can immediately obtain prob-

abilistic bounds on regret and on how far the realized expected profit may be from

the profit the firm expects to obtain given its estimated distribution.

Proposition 2. Let M̂∗ = M∗ ◦ F̂ be an empirically optimal mechanism. Suppose

that F̂ ∈ F̂ is such that ∀Sn ∈ S , P(‖F̂(Sn)−F0‖∞ > δ) ≤ p(n,δ) for some function

p :N×R+ → [0,1]. Then,

(i) P
(|π(M̂∗(Sn), F̂(Sn))−π(M̂∗(Sn),F0)| > δ)≤ p(n,δ/L); and

(ii) P
(
R(M̂∗(Sn),F0)> 2δ

)≤ p(n,δ/L),

where L denotes the Lipschitz constant from Lemma 1.

While Proposition 2 is a trivial observation, it enables the firm to obtain strong,

non-asymptotic probabilistic bounds on both profit and regret whenever basing an

empirically optimal mechanism on an estimator F̂ with specific properties. When-

ever the firm knows an upper bound θ̄ for the support of the true distribution, L

can be obtained in a way that depends exclusively on known constants and these

probabilistic profit and regret guarantees can be computed explicitly. The next two

examples illustrate how this result can be applied by focusing on estimators F̂ with

well-known properties, such as the empirical cumulative distribution and smooth

interpolations of it.

Example 1. Let M̂∗ = M∗ ◦ F̂ be any empirically optimal mechanism such that F̂

denotes the cumulative distribution estimator. By the Dvoretzky–Kiefer–Wolfowitz

inequality (Dvoretzky et al. 1956) with Massart’s (1990) constant, we have that

P(‖F̂n −F0‖∞ > δ)≤ 2exp
(−2nδ2)

and hence p(n,δ) = 2exp
(−2nδ2). Then, Proposition 2 applies and we can obtain

regret lower than 2δ with probability of at least 1− p(n,δ) and a confidence bound
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with range 2δ such that the true expected profit differs from π(M̂∗(Sn), F̂(Sn)) by

less than δ also with probability greater than 1− p(n,δ). �

Example 2. Suppose that F is restricted to the set of absolutely continuous dis-

tributions on Θ, of which F0 is known to be an element of, and that v is multi-

plicatively separable in θ ∈ Θ and x ∈ X . If we were to constrain F̂(S) to also be

absolutely continuous, admitting a strictly positive density and having convex sup-

port, an analytic characterization of M∗(F̂(S)) is known, given by pointwise max-

imization of the ironed virtual value given F̂(S).8 This would then simplify the

computational cost of finding the optimal mechanism. Take F̂ to be any interpo-

lation of the empirical cumulative distribution that results in a valid distribution

function that is absolutely continuous and has convex support, such as the linear

interpolation (see Lemma 10 in the appendix). Note that given that F0 is atom-

less by assumption, P (∃k,` ∈ {0,1, ...,n−1} : sk = s`) = 0 ∀n ∈N, and thus the linear

interpolation is well-defined with probability 1. Furthermore, for any such interpo-

lation F̂, with probability 1, the estimate given by F̂(Sn) differs from the empirical

cumulative distribution F̂E(Sn) by at most 1/n at any given point. Hence,

P(‖F̂(Sn)−F0‖∞ > δ)≤P(‖F̂E(Sn)−F0‖∞+‖F̂(Sn)− F̂E(Sn)‖∞ > δ)

≤P(‖F̂E(Sn)−F0‖∞ > δ−1/n)

≤ 2exp
(−2n(δ−1/n)2) ,

where, again, the last inequality follows from the Dvoretzky–Kiefer–Wolfowitz in-

equality with Massart’s constant. It follows that p(n,δ) = 2exp
(−2n(δ−1/n)2). As

F̂ ∈ F̂ , Proposition 2 applies and the regret and confidence bounds obtain. �

8Toikka (2011) has shown that for any absolutely continuous distribution F on Θ with a strictly
positive density, the set of maximizers M∗(F) pointwise maximize J̄(θ)v(θ, x)−c(x), where J̄(θ) is the
ironed version of J(θ) := θ− 1−F(θ)

f (θ) .
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As this next example shows, under some assumptions on the true distribution F0

one can even obtain not only non-asymptotic, but also non-probabilistic regret and

confidence bounds.

Example 3. Suppose that it is known that the true distribution F0 admits a density

f0 with total variation bounded by B <∞ and has support contained in [0,1].9 Let

VB denote the set of all densities on [0,1] with total variation bounded by B. Take

any kernel density estimator, given by

f̂ (Sn)(u)= 1
nhn

n∑
i=1

K
(

u−θi

h

)
,

where h is a smoothing parameter such that h → 0 as n →∞, θi denotes the value of

observation i, K ≥ 0 and
∫

K(u)du = 1. From theorem 3 in Datta (1992), we know

that, for any such kernel density estimator f̂n, one has

sup
f ∈VB

‖ f̂ (Sn)− f ‖1 ≤ (2B+1)k1h+
(

k2

nh

)1/2
,

where k1 := ∫ |u|K(u)du and k2 := ∫
K2(u)du. Define q(n,h) := (2B+1)k1h+

(
k2
nh

)1/2

and let F̂(Sn)(θ) := ∫
1u≤θ f̂ (Sn)(u)du denote the estimated cumulative distribution.

Note that there are several kernel density estimators available such that

k1 =
∫

|u|K(u)du <∞ and k2 =
∫

K2(u)du <∞,

e.g. if K is the uniform kernel, triangle, Epanechnikov, among others.

In order for F̂ to belong to F̂ we need for it to (1) be uniformly consistent and (2)

to have compact support. There are several ways to achieve this, namely by relying

on a kernel such that
∫
|u|>δK(u)du = 0 for some finite δ > 0 – which is satisfied by

most of the standard kernels, namely the ones cited above. For any such kernel,

k1,k2 <∞ and ∀Sn ∈ S , supp F̂(Sn) ⊆Θ is compact, by choosing lower and upper
9This can be generalized to some closed interval in R.
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bounds θ
¯
, θ̄ appropriately.

Therefore,

‖F̂(Sn)−F0‖∞ = sup
θ∈Θ

∣∣F̂(Sn)(θ)−F0(θ)
∣∣= sup

θ∈Θ

∣∣∣∣∫ 1u≤θ
(
f̂ (Sn)(u)− f0(u)ds

)∣∣∣∣
≤ sup

θ∈Θ

∫
1u≤θ| f̂ (Sn)(u)− f0(u)|ds ≤ ‖ f̂ (Sn)− f0‖1 ≤ q(n,h),

where ‖ ·‖1 denotes the L1 norm, i.e. ‖ f ‖1 := ∫ | f (u)|du. It follows immediately that

if h → 0 and n ·h →∞, ‖F̂(Sn)−F0‖∞ → 0 and, consequently, F̂ ∈ F̂ . The argument

above implies that

R(M̂∗(Sn),F0)≤ q(n,h)/2L;

|π(M̂∗(Sn), F̂(Sn))−π(M̂∗(Sn),F0)| ≤ q(n,h)/L.

As such, if f0 has total variation bounded by B, we can obtain non-probabilistic

bounds on regret and expected profit when implementing an empirically optimal

mechanism based on kernel density estimation. �

Other sample-based mechanisms could potentially yield even stronger robustness

properties. However, for any sample-based mechanism MS, one has

R(MS(Sn),F0)−R(M̂∗(Sn),F0)=π(MS(Sn),F0)−π(M̂∗(Sn),F0)

≤Π(F0)−π(M̂∗(Sn),F0)= R(M̂∗(Sn),F0).

As the examples above show, choosing F̂ appropriately ensures that P(R(M̂∗(Sn),F0)>
δ) declines exponentially with n. Hence, the gains in profit and regret guarantees

from implementing alternative pricing policies are modest at best, in a formal sense.

To conclude this section, we note that Proposition 2 can instead be used to de-

termine how many samples the firm requires in order to obtain specific robustness

guarantees when relying on empirically optimal mechanisms. That is, another read-
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ing of Proposition 2 is that the firm only needs at most N samples – where N is

the smallest integer such that α ≥ p(N,δ/L) – to secure at most 2δ of regret with

probability 1−α. Alternatively, the same N samples provide a (conservative) con-

fidence interval for profit with range 2δ with confidence level of 1−α. This results

in a non-asymptotic sample complexity bound for a specific class of sample-based

mechanisms. In contrast to the sample-complexity bounds obtained in Huang et al.

(2018), which pertain to the share of the optimal profit that the firm is able to se-

cure, R(M,F0)/Π(F0), we focus on bounding regret directly and our bounds are not

asymptotic, that is, they hold for finite samples.

4. Inference and Robustness

While the revenue and regret guarantees derived in the previous section are useful,

upon observing a particular sample and deciding on a menu, the firm may want to

be able to obtain consistent projections for the expected profit. In this section, we

show how to obtain consistent and unbiased estimates and conduct inference on

the expected profit.

Our results enable unbiased and consistent estimation of and inference on the

expected profit not only of empirically optimal mechanisms but of any given mech-

anism M ∈ M . Moreover, we show how empirically optimal mechanisms serve a

special purpose, in that they can be used to estimate and conduct inference on the

optimal expected profit. With these tools, one can provide confidence intervals for

the expected profit with specific asymptotic coverage for any one mechanism, cal-

culate probabilistic bounds for regret, or test whether one mechanism yields higher

expected profit than another.
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4.1 Expected Profit

An immediate consequence of Lipschitz continuity of the firm’s profit function with

respect to the distribution is that, for any mechanism and any consistent estimator

of the distribution of types, one can consistently estimate the expected profit that

such a mechanism would generate.

Proposition 3. For any true distribution F0 ∈ F , consistent estimator F̂ ∈ F̂ , and

mechanism M ∈M , we have π(M, F̂(Sn))
p→ π(M,F0). Moreover, if F̂ is an unbiased

estimator such as the empirical distribution function, E
[
π(M, F̂(Sn))

] = π(M,F0),

that is, the plug-in estimator is also unbiased.

Proof. By Lemma 1, we have that, ∀F̂ ∈ F̂ and ∀M ∈M ,

|π(M, F̂(Sn))−π(M,F0)| ≤ L‖F̂(Sn)−F0‖∞ p→ 0

Moreover, if F̂ is an unbiased estimator of F0, by linearity of π(M,F) in F, we have

that E
[
π(M, F̂(Sn))

]=π(M,E
[
F̂(Sn)

]
)=π(M,F0). �

An important aspect in estimation is the ability to conduct inference. For instance,

the firm could be interested in using statistical inference in order to compare dif-

ferent mechanisms, that is, to test whether a specific mechanism would deliver a

higher expected profit than another. Another possible application would be to ob-

tain valid confidence intervals for the expected profit under a particular mechanism,

as it is an arguably crucial tool for the development of routine business activities

such as drawing up budgets under different scenarios, with varying degrees of con-

fidence.

While the firm could potentially derive confidence intervals for the expected profit

by adjusting Proposition 2 and Example 1 to the mechanism it is considering, these

bounds would exhibit two drawbacks when used for this purpose. First, they re-
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quire knowledge of θ̄, the upper bound on the type distribution. Second, and more

critically, they generally do not provide the correct asymptotic coverage, that is,

they would be exceedingly conservative.

In order to address these drawbacks, we suggest a simple estimation procedure

that does yield asymptotically valid inference. First, we focus on the empirical dis-

tribution function as our estimator, since it admits a functional central limit theorem

(by Donsker’s theorem) when properly centered and rescaled. Then, because profit

is linear and continuous in the type distribution, it is Fréchet differentiable, with

derivative given by π̇M(·) = π(M, ·).10 One can thus obtain the asymptotic distribu-

tion of our consistent estimator for the expected profit π(M, F̂(Sn)) by appealing to

a simple functional Delta method result.

Theorem 1. Let F̂ denote the empirical distribution estimator. Then, ∀M ∈ M ,

∀F0 ∈F ,
p

n
(
π(M, F̂(Sn))−π(M,F0)

) d→ N(0,σ2
M,F0

),

where σ2
M,F0

:= E[
(π̇M(δθ−F0))2]= E[

(π(M,δθ−F0))2] and θ ∼ F0.

The function δθ denotes the cumulative distribution associated with a Dirac mea-

sure at θ, that is, δθ(x)= 1{x≥θ}.

Theorem 1 states that the distribution of the empirical process,

Gn := p
n

(
π(M, F̂(Sn))−π(M,F0)

)
,

converges weakly to N(0,σ2
M,F0

). A question then arises of how to estimate, in

practice, the asymptotic distribution in a consistent manner, as it depends on the

unknown distribution F0. We provide two alternatives. One option is the use of a

plug-in estimator for σ2
M,F0

. This can be done directly – as the functional depen-

10The Fréchet derivative π̇M is defined on the space of functions on Θ of bounded variation endowed
with the supremum-norm. We refer to the appendix for details.
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dence of σ2
M,F0

on F0 is known and a consistent estimate for F0 is readily available

–, or by following other plug-in methods as those in Shao (1993). Another option

is to rely on the classical bootstrap to approximate the distribution of Gn by the

distribution of Ĝn := p
n

(
π(M, F̂(Sn

B))−π(M, F̂(Sn))
)
, conditional on Sn, where Sn

B

denotes the resampling of n observations from Sn with uniform weights. That this

approach does in fact consistently estimate the limiting distribution was shown by

Parr (1985a, Theorem 4).

We note that other bootstrap methods would also yield consistent estimates, such

as subsampling (bootstrap without replacement) (Politis and Romano 1994) or

Jackknife procedures (Parr 1985b). Moreover, given that the Fréchet derivative

of profit is sufficiently well-behaved, under some smoothness assumptions on the

true distribution F0, smoothed versions of the bootstrap (Cuevas and Romo 1997)

can also be considered.

4.2 Optimal Profit and Regret

We now extend our statistical inference results, highlighting how empirically op-

timal mechanisms can be used to provide a consistent and asymptotically normal

estimator for optimal profit.

Given that the firm’s value function is Lipschitz continuous in the distribution

and that empirically optimal mechanisms attain the optimal profit for a consistent

estimate of the true distribution, it is easy to see that one can then use them as a

tool to consistently estimate the optimal profit that the firm would obtain, were it

to know F0. We formalize this observation as follows:

Proposition 4. For any true distribution F0 ∈F and empirically optimal mechanism

M̂∗ given by M̂∗ = M∗ ◦ F̂, π(M̂∗(Sn), F̂(Sn))
p→Π(F0).
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Proof. Similarly to Proposition 3, we again have that, by Lemma 2, Π is Lipschitz

continuous and therefore,

|π(M̂∗(Sn), F̂(Sn))−Π(F0)| = |Π(F̂(Sn))−Π(F0)| ≤ L‖F̂(Sn)−F0‖∞ p→ 0.

�

It is less straightforward that one could take an approach to conducting inference

on the optimal profit similar to that derived for fixed mechanisms. Specifically,

this would require proving that the firm’s value function Π is also Fréchet differen-

tiable.11 We confirm that indeed such an approach is valid by proving an interesting

technical result in this generalized Maskin-Riley setup: an envelope theorem for the

firm’s value function. In other words, our next result shows that the value function

is Fréchet differentiable at any distribution F ∈ F and that its Fréchet derivative

coincides with that of the expected profit at F with the optimal menu for F.

Theorem 2 (Envelope Theorem). Π is Fréchet differentiable at all F ∈F . Moreover,

its Fréchet derivative at F is given by Π̇F = π̇MF , ∀MF ∈M∗(F).

Then, defining the empirical process Ĝn := p
n

(
Π(F̂(Sn

B))−Π(F̂(Sn))
)
, conditional

on Sn, an adapted version of Theorem 1 ensues:

Theorem 3. Let F̂ denote the empirical distribution estimator. Then, ∀F0 ∈F ,

p
n

(
Π(F̂(Sn))−Π(F0)

) d→ N(0,σ2
F0

),

where σ2
F0

= E
[(
Π̇F0(δθ−F0)

)2
]
= E

[
(π(MF ,δθ−F0))2] and θ ∼ F0. Moreover, Ĝn

d→
N(0,σ2

F0
).

11In fact, the now standard functional Delta method requires only the weaker notion of Hadamard
differentiability; see, e.g., van der Vaart and Wellner (1996, ch. 3.9). However, the stronger notion
of Fréchet differentiability has the benefit of allowing us to bypass the measurability complications
that arise when using weaker notions.
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In this case, opposite to the case of inference under a fixed mechanism, we do

not have a valid (consistent) plug-in estimator for σ2
F0

, which depends on F0 and,

more problematically, also on an optimal mechanism under the distribution F0,

M0 ∈M∗(F0). An important argument in favor of a bootstrap approach to estimating

the asymptotic distribution in this case is that it bypasses this issue.

Under some conditions, it may make sense to rely on different estimators. For

instance, as discussed in Example 2, when v(θ, x) is multiplicatively separable and

F0 is known to be absolutely continuous and with compact and convex support, the

functional form of the solution is exactly known. This allows for a drastic simplifi-

cation of the problem from a computational point of view, since it dispenses with

the hurdle of finding the optimal mechanism for a given distribution. Especially

in the context of implementing a bootstrap approach, the gains can be substantial.

However, an estimate of the ironed virtual value depends on a suitable estimate of

the density f . Therefore, we find it especially relevant that, when F0 is known to be

absolutely continuous, one can use as an estimator the simple linear interpolation

of the empirical distribution discussed earlier to obtain a bootstrap estimator for

the asymptotic distribution. Further, we note that this extremely simple approach

is not only consistent for the true distribution F0, but also for its density.

Proposition 5. Let F̂ denote the linear interpolation of the empirical distribution

estimator. Then, for any absolutely continuous F0 ∈F ,

(1)
p

n
(
Π(F̂(Sn))−Π(F0)

) d→ N(0,σ2
F0

), where σ2
F0

= E
[(
Π̇F0(δθ−F0)

)2
]
;

(2) Ĝn
d→ N(0,σ2

F0
); and

(3) ‖ f̂ (Sn)− f0‖1
p−→ 0, where f̂ (Sn) and f0 denote the Radon-Nikodym derivatives

of F̂(Sn) and F0, respectively.

While estimating the optimal expected profit may be relevant for investment de-

cisions, as it provides an upper bound on the return of a given investment, these

results can also be used to estimate regret. As regret, R(M,F), is given by R(M,F)=
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Π(F)−π(M,F), it is Fréchet differentiable at any distribution F ∈ F , for any fixed

M ∈ M , as the sum of Fréchet differentiable functionals is itself Fréchet differen-

tiable. Then, using similar arguments as those in Proposition 4 and Theorem 3, one

can conduct inference on regret. Consequently, for any mechanism M ∈M , one can

not only obtain asymptotically valid probabilistic bounds for expected profit, but

also for regret.

4.3 Simulation Evidence

To conclude this section, we present empirical evidence on the finite sample prop-

erties of our estimators.

We conduct Monte Carlo simulations on the empirical coverage of the confidence

intervals for expected profit under a fixed mechanism – uniform pricing, with the

price set at 1/2 – and for the optimal expected profit, using empirically optimal

mechanisms for the empirical distribution. We use the approximation obtained by

classic bootstrapping (N out of N), which we have showed to be asymptotically

valid. We show simulation results for confidence levels α ∈ {.1, .05, .01}, with varying

sample size N. For each sample size, we draw 1,000 samples and, for each sample,

we estimate the confidence interval by drawing 1,000 bootstrap samples from the

original sample.

We focus on the case where consumers have quasilinear-linear utility and the unit

cost is normalized to zero, as in Bergemann and Schlag (2011) and Carrasco et al.

(2018). We show results for three different parameterizations of F0 relying on the

Beta distribution: Beta(1/4,1/4), Uniform(0,1) and Beta(4,4).12

In Table 1 we present evidence for the empirical coverage frequency at sample

sizes of 500, 1,000 and 2,500. As is immediate upon inspection of the table, our

estimators have extremely good finite sample properties, with the empirical cover-

12The empirical coverage results were consistent across other parameterizations and using Beta
mixtures or mixtures with degenerate distributions.
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Table 1. Empirical Coverage Frequencies

(a) Profit with Fixed Mechanism

Beta(1/4,1/4) Unif(0,1) Beta(4,4)
1−α .90 .95 .99 .90 .95 .99 .90 .95 .99

N
500 .891 .944 .983 .892 .946 .987 .895 .943 .988

1,000 .901 .934 .985 .901 .946 .986 .896 .953 .985
2,500 .909 .954 .989 .903 .953 .989 .889 .948 .985

(b) Optimal Profit

Beta(1/4,1/4) Unif(0,1) Beta(4,4)
1−α .90 .95 .99 .90 .95 .99 .90 .95 .99

N
500 .881 .933 .989 .894 .945 .983 .895 .950 .987

1,000 .886 .945 .985 .888 .943 .981 .894 .941 .984
2,500 .910 .952 .988 .890 .941 .988 .884 .933 .984

Note: This table shows the frequency with which the estimated confidence interval with asymp-
totic coverage of 1−α contained the true expected profit, π(M,F0) in the case of a fixed mech-
anism and Π(F0) in the case of the optimal expected profit. The fixed mechanism corresponds
to uniform pricing at 1/2. The estimated confidence interval followed a centered bootstrap
procedure with 1,000 samples redrawn with replacement from the original sample with 1,000
iterations, for each sample size N.

age frequencies being very close to the theoretical asymptotic coverage probability,

regardless of which of the three distributions is considered. We also investigated

the behavior of our estimators under small samples. As Figure 1 shows, they fare

reasonably well for sample sizes between 50 and 300.

We also considered the regret incurred by adopting an empirically optimal mech-

anism that depends on the empirical distribution with finite samples. As illustrated

in Figure 2, we empirically study the average regret as a share of the optimal ex-

pected profit, that is,
(
Π(F0)−π(M̂∗(Sn),F0)

)
/Π(F0). The average is taken across

1,000 samples of varying size in increments of 10 observations. Even with just 50

observations, the empirically optimal mechanism on average attains regret that is

under 4% of the optimal expected profit. For the purpose of comparison, the ro-

bust mechanism in Carrasco et al. (2018, Section 5.1), relying on an estimate of

the mean and assuming knowledge of the upper bound of the distribution, exhibits
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Figure 1. Empirical Coverage Frequencies

Note: This figure shows the frequency with which the estimated confidence interval with
asymptotic coverage of 1−α = .9, .95, .99 contained the true expected profit, π(M,F0) in the
case of a fixed mechanism and Π(F0) in the case of the optimal expected profit. The proce-
dure is as described in the note to Table 1. Sample size N varies between 10 and 300 with
increments of 10 observations. The fixed mechanism corresponds to uniform pricing at 1/2.
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Figure 2. Regret of the Empirically Optimal Mechanism as a share of Optimal
Profit

Note: This figure shows the average regret of the empirically optimal mechanism as a fraction
of the optimal expected profit under the true distribution F0. The average is taken over 1,000
samples for each sample size N between 10 and 300 with increments of 10 observations.

average regret no lower than 20% of the optimal expected profit under any of the

three distributions we consider.13

5. Extension to Single-Item Auctions

Before concluding, we discuss how to apply some of the insights developed in this

paper to the related setting of single-unit auctions. In particular, we show how

simple empirically optimal mechanisms in this context exhibit some of the desirable

robustness features shown in Section 3.

Suppose that the firm has a single item to auction to M ≥ 2 bidders. The firm

values the item at c > 0, and each bidder i = 1, ..., M is risk-neutral and values the

item at θi, drawn independently from distribution F0. To make matters simple,

we assume that F0 is absolutely continuous with convex and compact support. In

13We observe that for the minimax regret distribution derived in Carrasco et al. (2018), by con-
struction, the empirically optimal mechanism will attain the optimal profit with probability one and
regardless of the number of samples, and, therefore, also attain the minimal regret.
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such case, it is well-known that revenue equivalence holds and that a second-price

auction with a reserve price is optimal for the firm, with bidders disclosing their

types. Then, the optimal reserve price when the type distribution F satisfies the

same assumptions solves

max
r∈Θ

π(r,F),

where π(r,F) = ∫ θ̄
r dF(2;M) and F(2;M) denotes the distribution of the second-highest

willingness-to-pay, given a distribution of types F and M bidders. That is,

F(2;M)(θ)= M ·F(θ)M−1(1−F(θ))+F(θ)M .

Consider the case where the firm has access to a sample of n observations drawn

from F0 and the reserve price is set before bids are submitted.14 Similar to before,

denote an empirically optimal reserve price r̂∗ as the composition of a consistent

estimator, F̂, of the true distribution F0, based on the realized sample Sn, and a

selection from the set of reserve prices that are optimal for F, r∗.

The next proposition provides an analogue of Propositions 1 and 2 to this specific

setting:

Proposition 6. Let r̂∗ be an empirically optimal reserve price given by r̂∗ = r∗ ◦
F̂. Then, |π(r̂∗(Sn),F0)−Π(F0)| p→ 0. Moreover, if F̂ ∈ F̂ is such that ∀Sn ∈ S ,

P(‖F̂(Sn)−F0‖∞ > δ)≤ p(n,δ) for some function p :N×R+ → [0,1], then,

(i) P
(|π(r̂∗(Sn), F̂(Sn))−π(r̂∗(Sn),F0)| > δ)≤ p(n,δ/L); and

(ii) P (R(r̂∗(Sn),F0)> 2δ)≤ p(n,δ/L),

where L = 2M(M−1) and Π(F) := supr∈Θπ(r,F).

14The same arguments apply when the reserve price is secret and takes into account the bids sub-
mitted, as these would just translate into a larger sample of n+M observations.
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The key insight is that the expected profit is linear in distribution of the second-

order statistic and that this in turn is Lipschitz continuous in the distribution of

types, ‖F(2;M) −G(2;M)‖∞ ≤ 2M(M − 1)‖F −G‖∞. For r̂∗ to be empirically optimal,

though, we must have that F̂(Sn) is absolutely continuous and has convex and com-

pact support. Similarly to Example 2, when F̂ is the linearly interpolated empirical

distribution we have that p(n,δ) = 2exp(−2n(δ−1/n)2), delivering regret and confi-

dence bounds.15

Our results on the properties on the robustness of empirically optimal mecha-

nisms extend naturally to auction settings as this application illustrates. There is,

however, a natural limitation in extending our results on inference: expected profit

is linear in the distribution of the second-order statistic, not in the distribution of

types themselves.

6. Concluding Remarks

This paper has studied two separate but related questions. The first is how a firm

should price when uncertain about the distribution of consumers’ willingness-to-

pay. The second is how to conduct inference regarding the expected profit, both

under any fixed pricing strategy and for the optimal profit. When the firm has access

to a sample of consumers’ valuations, we showed that adopting an extremely simple

approach – estimating the distribution using the sample and then pricing optimally

for the estimated distribution – yields attractive robustness properties, in particular

obtaining probabilistic lower bounds both for the expected profit and for regret. On

the other hand, we provided a toolkit to conduct inference for the expected profit.

This enables practitioners to obtain confidence intervals not only for expected profit

but also, for example, for the difference in profit that two different mechanisms

15Cole and Roughgarden (2014) provide alternative sample-complexity bounds for this problem,
characterizing the asymptotic number of samples needed to achieve (1− ε) share of the optimal
profit.
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induce. More generally, this allows for a data-based approach to robust mechanism

design, where robustness properties are inferred from available data.

Two important concerns that we have not discussed are how to obtain such a

sample and whether a mechanism that trades-off experimentation and exploitation

performs better when sampling comes at a cost. Under the assumption of myopic

consumer behavior, such a sample can be procured by means of a survey. If con-

sumers are assumed to be forward-looking, they may gain from misrepresenting

their type, but incentive compatibility can be restored if the firm can preclude sur-

veyed customers from purchasing the item in the future (or supply it to them for

free in the case of unit demand). While under some conditions, optimal experi-

mentation asymptotically attains the optimal profit (see e.g. Aghion et al. 1991),

our results show that empirically optimal mechanisms do so as well, insofar as the

sample acquired grows. Therefore, the firm’s overall loss of revenue will depend

solely on the convergence rate of its estimator.

A different issue is how to optimality elicit types (i.e., generate a sample) through

revealed choices. If consumers’ types are not knowable but through their choices –

for instance, consumers may not be aware of their types – the firm could conduct

market research and elicit such a sample by means of a mechanism that induces

each type to self-select to a different pair of quantity and price. This market research

can then lead to the original sample or expand an existing sample – in which case

a cost-benefit analysis on the net value of acquiring additional observations may

come into play. Although existence and feasibility of such mechanisms is immediate,

exploring how to optimally conduct such sample elicitation endeavors may be an

interesting avenue for future research.
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7. Omitted Proofs

Existence of optimal mechanisms for arbitrary type distributions

Lemma 3. M∗(F),; for all F ∈F .

Proof. Define p̄ :=max(θ,x)∈Θ×X v(θ, x) and endow the power set of X ×[0, p̄] with the

Hausdorff metric. It is well-known that with the topology induced by the Hausdorff

metric, the set of all compact subsets of X × [0, p̄], denoted by K (X × [0, p̄]), is itself

compact. Define the set of mechanisms MIR as

MIR :=
{

M ∈M : max
(x,p)∈M

p ≤ p̄
}
⊆K (X × [0, p̄]).

Clearly, MIR is closed, and therefore also compact. Since v(·, ·) is continuous and

clearly so is the mapping Θ×MIR 3 (θ, M) 7→ M ∪ (0,0), we have by the Maximum

Theorem that the correspondence MIC :Θ×MIR â X × [0, p̄] such that

(θ, M) 7→MIC(θ, M)= argmax
(x,p)∈M∪(0,0)

v(θ, x)− p

is non-empty, compact valued and upper hemicontinuous. Applying the Maximum

Theorem once again, we obtain that the value function γ :Θ×MIR →R where

(θ, M) 7→ γ(θ, M)= max
(x,p)∈MIC(θ,M)

p− c(x)

is upper semicontinuous, i.e., for any (θ0, M0) ∈Θ×MIR, limsup(θ,M)→(θ0,M0)γ(θ, M)≤
γ(θ0, M0). Now, since γ is bounded we can apply (reverse) Fatou’s Lemma to obtain

that for any M0 ∈MIR,

limsup
Mn→M0

∫
γ(θ, Mn)dF(θ)≤

∫
limsup
Mn→M0

γ(θ, Mn)dF(θ)≤
∫
γ(θ, M0)dF(θ).
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This proves that the mapping (F, M) 7→ ∫
γ(·, M)dF is upper semicontinuous in M

for every F ∈ F . Therefore, since MIR is compact, the extreme value theorem

guarantees the existence of M∗ ∈ argmaxM∈MIR
π(M,F) = argmaxM∈M π(M,F) for

all F ∈ F , where the latter equality comes from the fact that (x, p) ∈ X × (p̄,∞) will

never be chosen over (0,0). �

Proof of Lemma 1

We first state two results that will prove useful in determining the Lipschitz conti-

nuity of π(M,F) in F ∈F .

Let P := {
P = θ0, . . . ,θnP : θ

¯
= θ0 ≤ θ1 ≤ ·· · ≤ θnP = θ̄}

and V ( f ) := supP∈P

∑nP−1
i=0 | f (θi+1)−

f (θi)|, where V ( f ) denotes the total variation of a function f :Θ→R. We have:

Lemma 4 (Beesack-Darst-Pollard Inequality (Darst and Pollard 1970; Beesack 1975)).

Let f , g,h be real-valued functions on a compact interval I = [a,b]⊂R, where h is of

bounded variation with total variation V (h) on I and such that
∫ b

a f dg and
∫ b

a hdg

both exist. Then,

m
∫ b

a
f dg+V (h) sup

a≤a′≤b′≤b

∫ b′

a′
f dg ≥

∫ b

a
hf dg ≥ m

∫ b

a
f dg+V (h) inf

a≤a′≤b′≤b

∫ b′

a′
f dg,

where m = inf {h(x) : x ∈ I}.

The following is a standard result in the mechanism design literature based on

Mirrlees (1971) and Milgrom and Segal (2002).

Lemma 5. The choices from a menu M ∈M satisfy

(x(θ), p(θ)) ∈ arg max
(x,p)∈M∪{(0,0)}

u(θ, x, p)

if, and only if, x(·) is nondecreasing, x(θ
¯
)= 0 and p(θ)= v(θ, x(θ))−∫ θ

θ
¯

v1(s, x(s))ds.
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For any F ∈ F , we can thus rewrite the problem – with some abuse of notation –

by choosing directly a function x from the set X , where

X := {
x : [θ

¯
, θ̄]→ X , x is nondecreasing and x(θ

¯
)= 0

}
,

in order to maximize profit, given by

π(x,F) :=
∫
Θ

(
v(θ, x(θ))−

∫ θ

θ
¯

v1(s, x(s))ds− c (x(θ))
)

dF(θ).

Consider the normed vector space (BV (Θ),‖ ·‖∞), where BV (Θ) := {g :Θ→R |V (g)<
∞}. For any fixed M ∈M , consider its corresponding allocation function x ∈X and

extend the functional π(M, ·) to BV (Θ) by defining

π̄(M,H)=
∫
Θ

(
v(θ, x(θ))−

∫ θ

θ
¯

v1(s, x(s))ds− c (x(θ))
)

dH(θ), ∀H ∈ BV (Θ).

Clearly, π̄(M,F)=π(M,F) for all F ∈F . Moreover, note that for all F,G ∈ BV (Θ),

|π̄(M,F)− π̄(M,G)| =
∣∣∣∣∫
Θ

(
v(θ, x(θ))−

∫ θ

θ
¯

v1(s, x(s))ds− c (x(θ))
)

d(F −G)(θ)
∣∣∣∣

≤
∣∣∣∣∫
Θ

h1d(F −G)(θ)
∣∣∣∣+ ∣∣∣∣∫

Θ
h2(θ)d(F −G)(θ)

∣∣∣∣
where

h1(θ) := v(θ, x(θ))

h2(θ) :=
∫ θ

θ
¯

v1(s, x(s))ds+ c (x(θ))

As both v and x are nondecreasing, we have that for any x(·),

V (h1)= v(θ̄, x(θ̄))−v(θ
¯
, x(θ

¯
))

≤ v(θ̄, x̄)=: L1 <∞
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As v is supermodular and nondecreasing in θ and c is increasing and convex,

V (h2)=
∫ θ̄

θ
¯

v1(s, x(s))ds+ c
(
x(θ̄)

)− c
(
x(θ

¯
)
)

≤ (θ̄−θ
¯
) ·max

θ′∈Θ
v1(θ′, x̄)+ c(x̄)=: L2 <∞

Moreover, we note that infθ∈Θh1(θ)= v(θ
¯
, x(θ

¯
))= 0 and infθ∈Θh2(θ)= ∫ θ

θ̄
¯

v1(s, x(s))ds+
c
(
x(θ

¯
)
) = c(0) = 0. Hence, for hi, with mi := infθ∈Θhi(θ), i = 1,2, and letting H(θ) =

F(θ)−G(θ),∣∣∣∣∣
∫ θ̄

θ
¯

hi(θ)dF(θ)−
∫ θ̄

θ
¯

hi(θ)dG(θ)

∣∣∣∣∣=
∣∣∣∣∣
∫ θ̄

θ
¯

hi(θ)d[F(θ)−G(θ)]

∣∣∣∣∣
≤max

{
mi[H(θ̄)−H(θ

¯
)]+V (hi) sup

θ
¯
≤α<β≤θ̄

∫ β

α
dH,

−mi[H(θ̄)−H(θ
¯
)]−V (hi) inf

θ
¯
≤α<β≤θ̄

∫ β

α
dH

}
=V (hi) ·max

{
sup

θ
¯
≤α<β≤θ̄

∫ β

α
dH, sup

θ
¯
≤α<β≤θ̄

−
∫ β

α
dH

}

=V (hi) ·max

{
sup

θ
¯
≤α<β≤θ̄

H(β)−H(α), sup
θ
¯
≤α<β≤θ̄

H(α)−H(β)

}

≤V (hi) · sup
θ
¯
≤α<β≤θ̄

|H(α)|+ |H(β)|

=2 ·V (hi) · ‖F −G‖∞

Combining the preceding inequalities results in

|π̄(M,F)− π̄(M,G)| ≤ 2(L1 +L2)‖F −G‖∞ ∀F,G ∈ BV (Θ), M ∈M .

The result is obtained by restricting the domain to F .
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Proof of Theorem 2

Let Y be a normed vector space with an open subset A ⊆ Y . As is standard, we

denote the dual space of Y by Y ∗. Before we prove the main result, let us recall

two different notions of differentiability:

Definition 1 (Gâteaux Differentiability). A functional T : Y → R is Gâteaux differ-

entiable at F ∈Y if there exists a linear functional ṪF ∈Y ∗ such that for all H ∈Y ,

ṪF (H)= lim
t→∞

T(F + tH)−T(F)
t

.

Definition 2 (Fréchet Differentiability). A functional T : Y → R is Fréchet differ-

entiable at F ∈ Y if there is a linear continuous functional ṪF defined on Y such

that

lim
‖H‖→0

|T(F +H)−T(F)− ṪF (H)|
‖H‖ = 0.

Note that if T is Gâteaux differentiable at F ∈ Y , then its derivative is unique.

Moreover, if it is Fréchet differentiable at F ∈Y , it is Gâteaux differentiable and its

derivatives agree.

An important generalization of Gâteaux differential for the case of convex and

continuous functionals is that of a subdifferential.

Definition 3. The subdifferential of T : Y →R at F ∈Y is the set

∂T(F) := {
D ∈Y ∗ : T(G)≥ T(F)+D(G−F) for each G ∈Y

}
.

Since the normed linear space (BV (Θ),‖ · ‖∞) is a metric space, and thus BV (Θ) is

open, the following lemma guarantees that ∂T is nonempty:
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Lemma 6 (Theorem 3.3.1. Niculescu and Persson (2018)). If T : A →R is a contin-

uous and convex functional, then ∂T(a),;, for all a ∈A .

The next result shows why subdifferentials can be thought of as a generalization

of Gâteaux differentials.

Lemma 7 (Proposition 3.6.9. Niculescu and Persson (2018)). Let T : A → R be a

continuous and convex functional. T is Gâteaux differentiable at a ∈A if and only

if ∂T(a) is a singleton.

In what follows, we borrow from the proof strategy of Theorem 2 in Battauz et al.

(2015), although their conditions do not directly apply to our problem.

First fix M ∈M and notice that π̄(M, ·) : BV (Θ)→R is a linear functional. Therefore,

it has a Fréchet derivative. In fact, for all F,H ∈ BV (Θ),

lim
‖H‖∞→0

|π̄(M,F +H)− π̄(M,F)− π̄(M,H)|
‖H‖∞

= lim
‖H‖∞→0

|π̄(M,F)+ π̄(M,H)− π̄(M,F)− π̄(M,H)|
‖H‖∞

= 0.

This implies that the Fréchet derivative of π̄(M,F) is independent of F and given

by π̇M(·) = π̄(M, ·). Therefore, π̄(M, ·) is also Gâteaux differentiable, with Gâteaux

derivative at F given by π̄(M, ·).

Define the functional Π̄ : BV (Θ)→R by

Π̄(H)= sup
M∈M

π̄(M,H), ∀H ∈ BV (Θ).

Since the set {π̄(M,H) : M ∈M } is bounded for any H ∈ BV (Θ), it is clear that Π̄(H)<
∞. Furthermore, it is immediate that Π̄(F)=Π(F) for all F ∈F .

As π̄(M,H) is linear in H for any M, one immediately has that Π̄ is convex in

H ∈ BV (Θ), as the supremum of a family of linear functionals. Moreover, from the
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proof of Lemma 2, it is easy to see that Π̄ remains Lipschitz continuous. Therefore,

by Lemma 6, ∂Π̄(H),; for any H ∈ BV (Θ).

By Lemma 3, M∗(F) , ; for any F ∈ F . Fix any F ∈ F . Take any D ∈ ∂Π̄(F) and

any MF ∈M∗(F). Note, for any G ∈ BV (Θ), that π̄(MF ,F)− π̄(MF ,G)≥ Π̄(F)−Π̄(G)≥
D(F −G), hence ∂Π̄(F) ⊆ ∂π̄(MF ,F) and, as π̄(MF , ·) is continuous and linear, by

Lemma 7, ∂π̄(MF ,F)= {
π̇MF

}
. Then, for any G ∈ BV (Θ),

π̄(MF ,F)− π̄(MF ,G)≥ Π̄(F)− Π̄(G)≥ π̇MF ,F (F −G)

⇔ π̄(MF ,F)− π̄(MF ,G)− π̇MF (F −G)≥ Π̄(F)− Π̄(G)− π̇MF (F −G)≥ 0

⇒ |π̄(MF ,F)− π̄(MF ,G)− π̇MF (F −G)| ≥ |Π̄(F)− Π̄(G)− π̇MF (F −G)| ≥ 0.

By Fréchet differentiability of π̄(MF , ·), we then have that ∀{Gn}n such that ‖Gn −
F‖∞ → 0,

0≤ |Π̄(Gn)− Π̄(F)− π̇MF (Gn −F)|
‖Gn −F‖∞

≤ |π̄(MF ,Gn)− π̄(MF ,F)− π̇MF (Gn −F)|
‖Gn −F‖∞

→ 0

and, consequently, Π̄ is Fréchet differentiable at F ∈F . As F was arbitrary, we have

that Π̄ is Fréchet differentiable at any F ∈F .

Proof of Theorems 1 and 3

We will prove Theorem 3. The proof for Theorem 1 is virtually the same.

By Theorem 2, Π(F) is Fréchet differentiable at any F ∈ F and, thus, it can be

written as Π(F)=Π(F0)+Π̇F0(F−F0)+o(‖F−F0‖∞). Furthermore, we note that F̂ is

an unbiased estimator of F0 and then, by linearity,

E

[
1
n

n∑
i=1

π(M∗(F0),δθi )

]
= E[

π(M∗(F0), F̂(Sn))
]=π(

M∗(F0),E
[
F̂(Sn)

])=π(M∗(F0),F0),
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where δθ denotes the cumulative distribution function associated with a Dirac delta

measure at θ and θi is the i-th observation in the sample Sn. Thus,

p
n

(
Π(F̂(Sn))−Π(F0)

)= 1p
n

n∑
i=1

(
π(M∗(F0),δθi )−π(M∗(F0),F0)

)+ p
n · o(‖F̂(Sn)−F0‖∞)

= 1p
n

n∑
i=1

(
π(M∗(F0),δθi )−π(M∗(F0),F0)

)
+ p

n · ‖F̂(Sn)−F0‖∞ · o(‖F̂(Sn)−F0‖∞)
‖F̂(Sn)−F0‖∞

= 1p
n

n∑
i=1

(
π(M∗(F0),δθi )−π(M∗(F0),F0)

)+Op(1) · o(1)

d→ N(0,σ2
F0

),

where σ2
F0

= E
[(
Π̇F0(δθ−F0)

)2
]
.

Finally, following Parr (1985a), we have that

Ĝn =p
n

(
Π(F̂(Sn

B))−Π((F̂(Sn))
)

=p
n

({
Π(F0)+ Π̇F0(F̂(Sn

B)−F0)+ o(‖F̂(Sn
B)−F0‖∞)

}
−{
Π(F0)+ Π̇F0(F̂(Sn)−F0)+ o(‖F̂(Sn)−F0‖∞)

})
=p

n
(
Π̇F0(F̂(Sn

B)− F̂(Sn))+ o(‖F̂(Sn
B)−F0‖∞)+ o(‖F̂(Sn)−F0‖∞)

)
=p

n
(
Π̇F0(F̂(Sn

B)− F̂(Sn))+ o(‖F̂(Sn
B)− F̂(Sn)‖∞)+ o(‖F̂(Sn)−F0‖∞)

)
,

where we used Fréchet differentiability to obtain a first-order von Mises expansion

of Π in the second equality, linearity of Π̇F0 in the third and the triangle inequality

in the last. As, F̂(Sn
B) and F̂(Sn) denote empirical distributions of F̂(Sn) and F0, by

the Dvoretzky et al.’s (1956) inequality, we have that

Ĝn = p
nΠ̇F0(F̂(Sn

B)− F̂(Sn))+ op(1)= 1p
n

n∑
i=1

(
π(M∗(F0),δθB

i
)−π(M∗(F0), F̂(Sn))

)
+ op(1)
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As E
[
π(M∗(F0),δθB

i
) | Sn

]
= π(M∗(F0), F̂(Sn)) and E

[(
π(M, F̂(Sn

B))
)2

]
= σ2

F0
< ∞, by

the central limit theorem in Bickel and Freedman (1981), we have that Ĝn
d→ G0.

Finally, as the limiting distribution is continuous, convergence is uniform.

Proof of Proposition 5

Let F̂E denote the empirical distribution estimator. By Lemmata 2 and 10, Π(F̂(Sn))=
Π(F̂E(Sn))+Op(n−1). As such, (1) follows from the observation that

p
n

{
Π(F̂(Sn))−Π(F0)

}
= p

n
{
Π(F̂E(Sn))−Π(F0)

}+Op(n−1/2) which, together with Slutsky’s theorem and

Theorem 3 implies
p

n
{
Π(F̂(Sn))−Π(F0)

} d→ N(0,σ2
F0

).

(2) results from the analogous observation that:

Ĝn = p
n

(
Π(F̂(Sn

B))−Π((F̂(Sn))
)= p

n
(
Π(F̂E(Sn

B))−Π((F̂E(Sn))
)
+Op(n−1/2) d→ N(0,σ2

F0
).

For (3), we first prove the following lemmata:

Lemma 8. Consider distribution functions F, F1, F2, . . . such that ‖Fn(t)−F(t)‖∞ a.s.−−→
0 for all t ∈R. For all n ∈N, let µn be the measure on (R,B(R)) induced by Fn and µ

be the measure induced by F. Then µn(A)→µ(A) for all A ∈B(R) almost surely.

Proof. Let
{
I j := (a j,b j]⊆R | j ∈N}

be a collection of disjoint intervals, and denote

I =⋃∞
j=1 I j. Then, since for any n ∈N, µn and µ are finite measures,

∣∣µn(I)−µ(I)
∣∣= ∣∣∣∣∣ ∞∑

j=1
µn(I j)−

∞∑
j=1

µ(I j)

∣∣∣∣∣=
∣∣∣∣∣ ∞∑

j=1
Fn(b j)−Fn(a j)−

∞∑
j=1

F(b j)−F(a j)

∣∣∣∣∣
=

∣∣∣∣∣ ∞∑
j=1

(
Fn(b j)−F(b j)

)− (
Fn(a j)−F(a j)

)∣∣∣∣∣
≤

∞∑
j=1

∣∣Fn(b j)−F(b j)
∣∣+ ∣∣Fn(a j)−F(a j)

∣∣
≤

∞∑
j=1

2sup
t∈R

|Fn(t)−F(t)|
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Let cn = supt∈R |Fn(t)−F| → 0. There exists a monotone convergent subsequence

cnk = 2supt∈R
∣∣Fnk (t)−F(t)

∣∣→ 0 as k →∞. Therefore, by the monotone convergence

theorem,

lim
k→∞

∣∣µnk (I)−µ(I)
∣∣≤ lim

k→∞
∑
j=1

2sup
t∈R

∣∣Fnk (t)−F(t)
∣∣= ∑

j=1
lim
k→∞

2sup
t∈R

∣∣Fnk (t)−F(t)
∣∣= 0.

This implies there exists a convergent subsequence µnk (I)→µ(I).

Now take any convergent subsequence µnm(I) of µn(I), which we will denote by

µm(I). We have ∣∣µm(I)−µ(I)
∣∣≤ ∞∑

j=1
2sup

t∈R
|Fm(t)−F(t)| .

Then cm = 2supt∈R |Fm(t)−F(t)| → 0 has a monotone convergent subsubsequence

cmr . We can thus apply the monotone convergence theorem once again to conclude

that ∣∣µmr (I)−µ(I)
∣∣→ 0 as r →∞.

Since the subsequence µm(I) is convergent by assumption, it must converge to the

limit of each of its subsequences, and we have

lim
m→∞µm(I)=µ(I).

Therefore, every convergent subsequence of µn(I) converges to µ(I). Since
(
µn(I)

)
n∈N

is bounded, this implies that limn→∞µn(I) = µ(I), and thus limn→∞µn is a pre-

measure that agrees with µ in the ring formed by disjoint unions of intervals of

the type (a,b], b > a. Therefore, since µ is σ-finite, Carathéodory’s extension theo-

rem implies that limn→∞µn must agree with µ on B(R) almost surely. �

Lemma 9. Let {Fn :Θ→ [0,1] | n ∈N} be a sequence of absolutely continuous dis-

tribution functions with Radon-Nikodym derivatives given by fn. If there exists a
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distribution function F such that ‖Fn −F‖∞ → 0, then it is absolutely continuous

with Radon-Nikodym derivative f and ‖ fn − f ‖1 → 0.

Proof. As ∀n ∈ N, Fn is absolutely continuous and Θ has finite Lebesgue measure,

then the Radon-Nikodym derivatives { fn}n∈N are uniformly integrable with respect

to the Lebesgue measure. Let µ be the measure associated with F. By the Vitali-

Hahn-Saks theorem and Lemma 8, we have that

lim
n→∞

∫
A

fn(θ)dθ =µ(A)

for all A ∈ B(Θ). Since { fn}n∈N is uniformly integrable, the Dunford-Pettis theorem

implies that every subsequence of { fn}n∈N has a convergence subsubsequence con-

verging to g in L1(Θ). Denote such a subsubsequence by { fnk }k∈N. Then, for every

A ∈B(R),

∫
A

g(θ)dθ = lim
k→∞

∫
A

fnk dθ = lim
k→∞

µnk (A)=
∫

A
f (θ)dθ.

This implies that f = g almost surely and ‖ fn − f ‖1 → 0. �

Given that, {F̂(Sn)}n∈N is absolutely continuous with probability 1 and ‖F̂(Sn)−F0‖∞ a.s.→
0, the previous Lemmata imply that ‖ fn − f0‖1

p→ 0, which concludes the proof for

(3).

Proof of Proposition 6

First, we note that π(r,F) is Lipschitz continuous in F, with a Lipschitz constant that

is independent of r. Note that

|π(r,F)−π(r,G)| =
∣∣∣∣∫
Θ

1θ≥rd(F(2;M) −G(2;M))
∣∣∣∣

≤ ‖F(2;M) −G(2;M)‖∞
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= sup
θ∈Θ

|M · (F(θ)M−1 −G(θ)M−1)+ (M−1) · (G(θ)M −F(θ)M)|

≤ M ·sup
θ∈Θ

|F(θ)M−1 −G(θ)M−1|+ (M−1) ·sup
θ∈Θ

|F(θ)M −G(θ)M)|

≤ 2M(M−1)‖F −G‖∞.

where the first inequality uses the Beesack-Darst-Pollard inequality – see Lemma 4.

By the same arguments as in Lemma 2, we have that Π(F) := supr∈Θπ(r,F) is also

Lipschitz continuous in F and, by those made in Propositions 1 and 2, the result

follows.

Other Proofs

Let the linearly interpolated empirical cumulative distribution be given by

F̂(Sn)(θ)=
n−1∑
k=0

1{θ(k)≤θ<θ(k+1)}
1
n

θ−θ(k)

θ(k+1) −θ(k)
+1{θ(n)≤θ},

where θ(k) denotes the k-th smallest observation in the sample Sn and θ(0) = θ
¯
. The

following holds:

Lemma 10. For any absolutely continuous F0 ∈F , (1) ‖F̂(Sn)−F0‖∞ a.s.→ 0 and (2)

with probability 1, F̂(Sn) ∈F , F̂(Sn) has convex support and is absolutely continu-

ous.

Proof. Note that, with probability 1, any sampled value θi > θ
¯

as F0 is absolutely

continuous and so F̂(Sn) is well defined. By construction, F̂(Sn) has convex support

and is absolutely continuous. As the probability that any two sampled observations

have the same value is null, we have that, with probability 1, ‖F̂(Sn)− F̂E(Sn)‖∞ =
1/n where F̂E denotes the empirical cumulative distribution and, with probability

1, ‖F̂(Sn)−F0‖∞ = ‖F̂E(Sn)−F0‖∞+1/n. Consequently, as ‖F̂E(Sn)−F0‖∞ a.s.→ 0 and

as F0 is absolutely continuous, then the result follows. �
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